Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase (2025)

  • Schwarz, F. & Aebi, M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011).

    Article CAS PubMed Google Scholar

  • Nothaft, H. & Szymanski, C.M. Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8, 765–778 (2010).

    Article CAS PubMed Google Scholar

  • Calo, D., Kaminski, L. & Eichler, J. Protein glycosylation in Archaea: sweet and extreme. Glycobiology 20, 1065–1076 (2010).

    Article CAS PubMed Google Scholar

  • Szymanski, C.M., Yao, R., Ewing, C.P., Trust, T.J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999).

    Article CAS PubMed Google Scholar

  • Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article CAS PubMed Google Scholar

  • Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article CAS PubMed Google Scholar

  • Cherepanova, N., Shrimal, S. & Gilmore, R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr. Opin. Cell Biol. 41, 57–65 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Nothaft, H. & Szymanski, C.M. Bacterial protein N-glycosylation: new perspectives and applications. J. Biol. Chem. 288, 6912–6920 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Valguarnera, E., Kinsella, R.L. & Feldman, M.F. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. J. Mol. Biol. 428, 3206–3220 (2016).

    Article CAS PubMed Google Scholar

  • Wacker, M. et al. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA 103, 7088–7093 (2006).

    Article CAS PubMed PubMed Central Google Scholar

  • Marshall, R.D. Glycoproteins. Annu. Rev. Biochem. 41, 673–702 (1972).

    Article CAS PubMed Google Scholar

  • Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article CAS PubMed Google Scholar

  • Liu, J. & Mushegian, A. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12, 1418–1431 (2003).

    Article CAS PubMed PubMed Central Google Scholar

  • Kelleher, D.J. & Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006).

    Article CAS PubMed Google Scholar

  • Yan, Q. & Lennarz, W.J. Studies on the function of oligosaccharyl transferase subunits: a glycosylatable photoprobe binds to the luminal domain of Ost1p. Proc. Natl. Acad. Sci. USA 99, 15994–15999 (2002).

    Article CAS PubMed PubMed Central Google Scholar

  • Nasab, F.P., Schulz, B.L., Gamarro, F., Parodi, A.J. & Aebi, M. All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 3758–3768 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  • Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K.P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    Article CAS PubMed Google Scholar

  • Matsumoto, S. et al. Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Proc. Natl. Acad. Sci. USA 110, 17868–17873 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Matsumoto, S., Taguchi, Y., Shimada, A., Igura, M. & Kohda, D. Tethering an N-glycosylation sequon-containing peptide creates a catalytically competent oligosaccharyltransferase complex. Biochemistry 56, 602–611 (2017).

    Article CAS PubMed Google Scholar

  • Gerber, S. et al. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J. Biol. Chem. 288, 8849–8861 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Lizak, C. et al. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Nat. Commun. 4, 2627 (2013).

    Article PubMed CAS Google Scholar

  • Bause, E., Breuer, W. & Peters, S. Investigation of the active site of oligosaccharyltransferase from pig liver using synthetic tripeptides as tools. Biochem. J. 312, 979–985 (1995).

    Article CAS PubMed PubMed Central Google Scholar

  • Imperiali, B., Shannon, K.L. & Rickert, K.W. Role of peptide conformation in asparagine-linked glycosylation. J. Am. Chem. Soc. 114, 7942–7944 (1992).

    Article CAS Google Scholar

  • Imperiali, B. & Tai, V.W. in Carbohydrate-Based Drug Discovery (ed. C.-H. Wong) 281–303 (Wiley-VCH, 2003).

  • Liu, F. et al. Rationally designed short polyisoprenol-linked PglB substrates for engineered polypeptide and protein N-glycosylation. J. Am. Chem. Soc. 136, 566–569 (2014).

    Article CAS PubMed Google Scholar

  • Musumeci, M.A. et al. In vitro activity of Neisseria meningitidis PglL O-oligosaccharyltransferase with diverse synthetic lipid donors and a UDP-activated sugar. J. Biol. Chem. 288, 10578–10587 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Compain, P. & Martin, O.R. Carbohydrate mimetics-based glycosyltransferase inhibitors. Bioorg. Med. Chem. 9, 3077–3092 (2001).

    Article CAS PubMed Google Scholar

  • Ramírez, A.S. et al. Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs. Glycobiology 27, 525–535 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Hajduch, J. et al. A convenient synthesis of the C-1-phosphonate analogue of UDP-GlcNAc and its evaluation as an inhibitor of O-linked GlcNAc transferase (OGT). Carbohydr. Res. 343, 189–195 (2008).

    Article CAS PubMed Google Scholar

  • Knapp, S. & Myers, D.S. α-GlcNAc thioconjugates. J. Org. Chem. 66, 3636–3638 (2001).

    Article CAS PubMed Google Scholar

  • Knapp, S. & Ajayi, K. The anomeric Pudovik rearrangement. Tetrahedr. Lett. 48, 1945–1949 (2007).

    Article CAS Google Scholar

  • Knapp, S., Gonzalez, S., Myers, D.S., Eckman, L.L. & Bewley, C.A. Shortcut to mycothiol analogues. Org. Lett. 4, 4337–4339 (2002).

    Article CAS PubMed Google Scholar

  • Engel, R. Phosphonates as analogues of natural phosphates. Chem. Rev. 77, 349–367 (1977).

    Article CAS Google Scholar

  • Jaffee, M.B. & Imperiali, B. Exploiting topological constraints to reveal buried sequence motifs in the membrane-bound N-linked oligosaccharyl transferases. Biochemistry 50, 7557–7567 (2011).

    Article CAS PubMed Google Scholar

  • Ihssen, J. et al. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB. BMC Biotechnol. 12, 67 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • Lizak, C. et al. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB. J. Biol. Chem. 289, 735–746 (2014).

    Article CAS PubMed Google Scholar

  • Weerapana, E., Glover, K.J., Chen, M.M. & Imperiali, B. Investigating bacterial N-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J. Am. Chem. Soc. 127, 13766–13767 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  • Glover, K.J., Weerapana, E. & Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102, 14255–14259 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  • Igura, M. et al. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 27, 234–243 (2008).

    Article CAS PubMed Google Scholar

  • Pedebos, C., Arantes, P.R., Giesel, G.M. & Verli, H. In silico investigation of the PglB active site reveals transient catalytic states and octahedral metal ion coordination. Glycobiology 25, 1183–1195 (2015).

    Article CAS PubMed Google Scholar

  • Lee, S.H. & Im, W. Transmembrane motions of PglB induced by LLO are coupled with EL5 loop conformational changes necessary for OST activity. Glycobiology 27, 734–742 (2017).

    Article CAS PubMed Central PubMed Google Scholar

  • Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article CAS PubMed Google Scholar

  • Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D. Biol. Crystallogr. 58, 1948–1954 (2002).

    Article PubMed CAS Google Scholar

  • DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

  • Kowarik, M. et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314, 1148–1150 (2006).

    Article CAS PubMed Google Scholar

  • Perez, C. et al. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433–438 (2015).

    Article CAS PubMed Google Scholar

  • Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase (2025)

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Rev. Porsche Oberbrunner

    Last Updated:

    Views: 6276

    Rating: 4.2 / 5 (73 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Rev. Porsche Oberbrunner

    Birthday: 1994-06-25

    Address: Suite 153 582 Lubowitz Walks, Port Alfredoborough, IN 72879-2838

    Phone: +128413562823324

    Job: IT Strategist

    Hobby: Video gaming, Basketball, Web surfing, Book restoration, Jogging, Shooting, Fishing

    Introduction: My name is Rev. Porsche Oberbrunner, I am a zany, graceful, talented, witty, determined, shiny, enchanting person who loves writing and wants to share my knowledge and understanding with you.